3.297 \(\int \frac{(a+b x)^{3/2}}{x^2} \, dx\)

Optimal. Leaf size=51 \[ -\frac{(a+b x)^{3/2}}{x}+3 b \sqrt{a+b x}-3 \sqrt{a} b \tanh ^{-1}\left (\frac{\sqrt{a+b x}}{\sqrt{a}}\right ) \]

[Out]

3*b*Sqrt[a + b*x] - (a + b*x)^(3/2)/x - 3*Sqrt[a]*b*ArcTanh[Sqrt[a + b*x]/Sqrt[a]]

________________________________________________________________________________________

Rubi [A]  time = 0.0147685, antiderivative size = 51, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 13, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.308, Rules used = {47, 50, 63, 208} \[ -\frac{(a+b x)^{3/2}}{x}+3 b \sqrt{a+b x}-3 \sqrt{a} b \tanh ^{-1}\left (\frac{\sqrt{a+b x}}{\sqrt{a}}\right ) \]

Antiderivative was successfully verified.

[In]

Int[(a + b*x)^(3/2)/x^2,x]

[Out]

3*b*Sqrt[a + b*x] - (a + b*x)^(3/2)/x - 3*Sqrt[a]*b*ArcTanh[Sqrt[a + b*x]/Sqrt[a]]

Rule 47

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + 1)), x] - Dist[(d*n)/(b*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d},
x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && LtQ[m, -1] &&  !(IntegerQ[n] &&  !IntegerQ[m]) &&  !(ILeQ[m + n + 2, 0
] && (FractionQ[m] || GeQ[2*n + m + 1, 0])) && IntLinearQ[a, b, c, d, m, n, x]

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{(a+b x)^{3/2}}{x^2} \, dx &=-\frac{(a+b x)^{3/2}}{x}+\frac{1}{2} (3 b) \int \frac{\sqrt{a+b x}}{x} \, dx\\ &=3 b \sqrt{a+b x}-\frac{(a+b x)^{3/2}}{x}+\frac{1}{2} (3 a b) \int \frac{1}{x \sqrt{a+b x}} \, dx\\ &=3 b \sqrt{a+b x}-\frac{(a+b x)^{3/2}}{x}+(3 a) \operatorname{Subst}\left (\int \frac{1}{-\frac{a}{b}+\frac{x^2}{b}} \, dx,x,\sqrt{a+b x}\right )\\ &=3 b \sqrt{a+b x}-\frac{(a+b x)^{3/2}}{x}-3 \sqrt{a} b \tanh ^{-1}\left (\frac{\sqrt{a+b x}}{\sqrt{a}}\right )\\ \end{align*}

Mathematica [C]  time = 0.0118689, size = 33, normalized size = 0.65 \[ \frac{2 b (a+b x)^{5/2} \, _2F_1\left (2,\frac{5}{2};\frac{7}{2};\frac{b x}{a}+1\right )}{5 a^2} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*x)^(3/2)/x^2,x]

[Out]

(2*b*(a + b*x)^(5/2)*Hypergeometric2F1[2, 5/2, 7/2, 1 + (b*x)/a])/(5*a^2)

________________________________________________________________________________________

Maple [A]  time = 0.009, size = 47, normalized size = 0.9 \begin{align*} 2\,b \left ( \sqrt{bx+a}+a \left ( -1/2\,{\frac{\sqrt{bx+a}}{bx}}-3/2\,{\frac{1}{\sqrt{a}}{\it Artanh} \left ({\frac{\sqrt{bx+a}}{\sqrt{a}}} \right ) } \right ) \right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x+a)^(3/2)/x^2,x)

[Out]

2*b*((b*x+a)^(1/2)+a*(-1/2*(b*x+a)^(1/2)/b/x-3/2*arctanh((b*x+a)^(1/2)/a^(1/2))/a^(1/2)))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^(3/2)/x^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.66102, size = 247, normalized size = 4.84 \begin{align*} \left [\frac{3 \, \sqrt{a} b x \log \left (\frac{b x - 2 \, \sqrt{b x + a} \sqrt{a} + 2 \, a}{x}\right ) + 2 \,{\left (2 \, b x - a\right )} \sqrt{b x + a}}{2 \, x}, \frac{3 \, \sqrt{-a} b x \arctan \left (\frac{\sqrt{b x + a} \sqrt{-a}}{a}\right ) +{\left (2 \, b x - a\right )} \sqrt{b x + a}}{x}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^(3/2)/x^2,x, algorithm="fricas")

[Out]

[1/2*(3*sqrt(a)*b*x*log((b*x - 2*sqrt(b*x + a)*sqrt(a) + 2*a)/x) + 2*(2*b*x - a)*sqrt(b*x + a))/x, (3*sqrt(-a)
*b*x*arctan(sqrt(b*x + a)*sqrt(-a)/a) + (2*b*x - a)*sqrt(b*x + a))/x]

________________________________________________________________________________________

Sympy [B]  time = 3.38634, size = 92, normalized size = 1.8 \begin{align*} - 3 \sqrt{a} b \operatorname{asinh}{\left (\frac{\sqrt{a}}{\sqrt{b} \sqrt{x}} \right )} - \frac{a^{2}}{\sqrt{b} x^{\frac{3}{2}} \sqrt{\frac{a}{b x} + 1}} + \frac{a \sqrt{b}}{\sqrt{x} \sqrt{\frac{a}{b x} + 1}} + \frac{2 b^{\frac{3}{2}} \sqrt{x}}{\sqrt{\frac{a}{b x} + 1}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)**(3/2)/x**2,x)

[Out]

-3*sqrt(a)*b*asinh(sqrt(a)/(sqrt(b)*sqrt(x))) - a**2/(sqrt(b)*x**(3/2)*sqrt(a/(b*x) + 1)) + a*sqrt(b)/(sqrt(x)
*sqrt(a/(b*x) + 1)) + 2*b**(3/2)*sqrt(x)/sqrt(a/(b*x) + 1)

________________________________________________________________________________________

Giac [A]  time = 1.21026, size = 76, normalized size = 1.49 \begin{align*} \frac{\frac{3 \, a b^{2} \arctan \left (\frac{\sqrt{b x + a}}{\sqrt{-a}}\right )}{\sqrt{-a}} + 2 \, \sqrt{b x + a} b^{2} - \frac{\sqrt{b x + a} a b}{x}}{b} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^(3/2)/x^2,x, algorithm="giac")

[Out]

(3*a*b^2*arctan(sqrt(b*x + a)/sqrt(-a))/sqrt(-a) + 2*sqrt(b*x + a)*b^2 - sqrt(b*x + a)*a*b/x)/b